Architectural Engineering - Undergraduate Program

Undergraduate Programs

The following sections apply to each student majoring in any undergraduate program housed in the Civil Engineering Department: Architectural Engineering, Civil Engineering, and Construction Management. In these sections, "program" refers to any of these programs and "student" refers to any student (UCOL, Intended, or Professional Program) majoring in any one of these programs.

Refer to the College of Engineering section of this catalog for additional information concerning the following topics: Admission to the College of Engineering, Advising, Admission into the Professional Program, College of Engineering Academic Regulations, Honors Degrees in Engineering, Professional Engineering Licensure, and Cooperative Education.

Admission Requirements

Admission as an Architectural Engineering major, a Civil Engineering major, or a Construction Management major is subject to the relevant requirements and policies of the University of Texas at Arlington and of the UTA College of Engineering.  The Civil Engineering Department does not impose additional requirements.

Transfer Credit 

When a student transfers, a loss of credit can occur that may require change in academic plans. A course, that appears to be similar, may be different in either content or level of difficulty and, as a result, cannot be used for degree credit. Another course may have no equivalent in a particular degree plan. More than one transferred course may satisfy a degree requirement when only one is required. The UTA Civil Engineering Department encourages students interested in our programs to make early contact with our advisors so that we can help avoid these problems.

A student must earn a grade of C or better for a course to be transferred.  Any course that is offered under the Texas Common Course Numbering system is accepted as equivalent to the corresponding UTA course.  It is the responsibility of the student to establish the equivalence of any other course or courses to a course required in a program. The student should be prepared to provide a syllabus or similar documents to establish equivalence. To be acceptable as equivalent, at a minimum, a transferred course must have no less credit value than the corresponding course and contain substantially equivalent course content. To be accepted in transfer, junior and senior level courses must be taken at a college or university with the same accreditation as UTA in the area offering the course. For example, a Civil Engineering course must come from an ABET accredited Civil Engineering program.

When a student's record or performance indicates weakness in certain areas of study, they may be required to retake courses or to take additional courses.

Before enrolling in a course at another institution to transfer for credit toward a program degree, a student should consult with a program advisor to verify that the course can be used in the student's degree plan and to obtain the necessary written permission.

Advising 

Academic advisement is required for every undergraduate student before class enrollment each semester.

A new student with fewer than 24 hours of transferrable credit, including any student entering directly from high school, is advised in the University Advising Center of University College. After one or more semesters and sufficient progress in the degree program, this student is released by the University Advising Center to the program advisors.

Prior to enrollment, a new student with 24 or more hours of transferrable credit must make an appointment with the transfer advisor of their program. However, if all of the student's transfer credit was earned at a Texas community college, an appointment may be scheduled with any advisor for their program. The advising appointment should be scheduled as soon as possible after admission, but certainly prior to registration. A transfer student should not make an advising appointment with a transfer advisor after the initial evaluation of their transfer credit is complete.

During each long semester, a specified period is set aside for the academic advisement of continuing students. Each continuing student is responsible for meeting with their program advisor during this advising period. Continuing students will receive instructions prior to each advising period related to preparing for and making an advising appointment. Academic advising will be available at other times but a student who does not meet with their program advisor during the regular advising period may have fewer alternatives when selecting courses.

Academic Rules, Regulations, and Policies

In addition to the rules, regulations, and policies established below and in the individual program sections, each student is subject to the rules, regulations, and policies of the University of Texas at Arlington and of the UTA College of Engineering. Each student should become familiar with these. The rules, regulations, and policies of the University of Texas at Arlington and of the UTA College of Engineering are set forth in other sections of this catalog. It is the responsibility of each student to follow the applicable published rules. Failure to follow these rules may be grounds for dismissal from the program.

CE department course requisites

  • A student must have the written approval of their program advisor to register for any course that will satisfy a requirement of their degree program.
  • A student must have specific written permission of their program advisor to register at a different institution for any course that will satisfy a requirement of their degree program.
  • A student may not attempt a CE Department course without satisfying all current requisite requirements. A prerequisite course requirement is satisfied by earning a grade of C or better. A co-requisite course requirement is satisfied by earning a grade of C or better or by concurrent enrollment in the course at UTA.
  • A student may not drop a course which is co-requisite to a CE Department course without also dropping the CE Department course.
  • No professional program courses may be attempted until the student is admitted into the professional program or obtains the written permission of the Department Chair.
  • No 4000 level professional program courses may be attempted until the student is admitted into the professional program.

repeating courses

A student may not attempt any course more than three times and apply that course toward a program degree. Enrollment in a course for a period of time sufficient for assignment of a grade, including a grade of W, is considered an attempt.

admission to the professional program

Requirements for admission to the professional program in each program are in accordance with those of the College of Engineering with the following added stipulations:

  • Application to the professional program is to be made to the CE Department during the semester that the advancement requirements are being completed.
  • Each student must complete all pre-professional courses stipulated under "Requirements for a Bachelor of Science Degree in" the program with a minimum grade of C in each course and a minimum GPA of 2.25 in: a) all courses, b) in all math, science, and engineering courses, and c) in all program specific courses. 
  • Upon receipt of the application, a student's record is individually reviewed including grades, academic and personal integrity, record of drops and course withdrawals, the order in which courses have been taken, the number of times a student has attempted a course for credit, and any other aspect of the student's record that may be deemed pertinent to admission.

The student must be admitted to the professional program and have an approved degree plan on file in order to graduate. The degree plan is generated upon entry to the professional program. Graduating seniors should apply to graduate during the next-to-last semester.

grounds for dismissal from the ce program

A student whom the UTA Office of Student Conduct has found to have violated the UTA Code of Student Conduct a second time is subject to dismissal from the CE program.

Minor Field of Study

The Civil Engineering Department does not support the option of pursuing a minor in Architectural Engineering, in Civil Engineering, or in Construction Management by other engineering or non-engineering majors. 

Educational and Professional Career Paths

Architectural engineering is interdisciplinary, requiring expertise in structural engineering and architecture. An Architectural Engineer can be responsible for the individual design of each of a building’s systems: structural, heating, ventilation, and air conditioning, lighting and electrical, plumbing, and fire protection. An Architectural Engineer can be responsible for the coordinated design of all these systems and, then, for the construction of the entire building with the goal of a safe, economical, and sustainable building system that satisfies the use requirements and provides a secure and comfortable environment for its occupants.

This degree program is designed to provide a strong foundation in science, mathematics, and engineering science; technical competence in the structural engineering area of civil engineering; and an understanding of the importance of ethics, safety, professionalism, and socioeconomic concerns in resolving technical problems through synthesis, planning, and design. Elements of design are introduced at the freshman level. This is followed by an analysis and design component in professional program courses, culminating in a comprehensive design experience.

Architectural engineering graduates are prepared for advanced graduate degrees and a wide range of career paths with consulting firms, industry and governmental agencies.

Architectural Engineering BS Degree at UT Arlington

Initially, the Bachelor of Science in Architectural Engineering will emphasize the building structures area. The remaining three areas of Architectural Engineering (building mechanical systems, building electrical systems, and construction / construction management) will be included at various levels but with less emphasis. As resources are added to the program and additional courses can be added, all four areas will become available as the major area.

The Civil Engineering Department will seek accreditation by the Engineering Accreditation Commission of ABET, www.abet.org. ABET is recognized by the U. S. Department of Education as the sole agency responsible for accreditation of education programs leading to degrees in engineering. Graduation from an ABET accredited program is an important factor in attaining registration as a Professional Engineer in the State of Texas and other states. The Architectural Engineering program is housed in the Civil Engineering Department.

Educational Objectives of the Undergraduate Program

Most alumni of the AREN program will attain the following Program Educational Objectives (PEOs) within a few years after graduation:

  • Obtain professional position and practice architectural engineering, or pursue graduate studies.
  • Be involved in continuing education and professional development activities.
  • Obtain PE licensure or other professional certification.

Student Outcomes of the Undergraduate Program

In order to produce graduates who will achieve the Program Educational Objectives a few years after graduation, it is expected that the undergraduate students will attain the following Student Outcomes by the time of graduation:

  • an ability to apply knowledge of mathematics, science, and engineering
  • an ability to design and conduct experiments
  • an ability to analyze and interpret data
  • an ability to design a system, component, or process to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability, and sustainability
  • an ability to function on multidisciplinary teams
  • an ability to identify, formulate, and solve engineering problems
  • an understanding of professional and ethical responsibility
  • an ability to communicate effectively
  • the broad education necessary to understand the impact of engineering solutions in a global, economic, environmental, and societal context
  • a recognition of the need for, and an ability to engage in life-long learning
  • a knowledge of contemporary issues
  • an ability to use the techniques, skills, and modern engineering tools necessary for engineering practice

Requirements for a Bachelor of Science Degree in Architectural Engineering

Courses Fulfilling the University General Core Requirements (minimum 42 hours required)46
Communication (minimum 6 hours required)
RHETORIC AND COMPOSITION I
PROFESSIONAL AND TECHNICAL COMMUNICATION FOR SCIENCE AND ENGINEERING 2
Creative Arts (minimum 3 hours required)
INTRODUCTION TO ARCHITECTURE AND INTERIOR DESIGN
Government/Political Science (minimum 6 hours required)
GOVERNMENT OF THE UNITED STATES
STATE AND LOCAL GOVERNMENT
Language, Philosophy & Culture (minimum 3 hours required)
INTRODUCTION TO PHILOSOPHY
Mathematics (minimum 6 hours required)
CALCULUS I
CALCULUS II
Life & Physical Sciences (minimum 6 hours required)
GENERAL TECHNICAL PHYSICS I
GENERAL TECHNICAL PHYSICS II
Social & Behavioral Sciences (minimum 3 hours required)
ECONOMICS FOR ENGINEERS
US History (minimum 6 hours required)
HISTORY OF THE UNITED STATES TO 1865
HISTORY OF THE UNITED STATES, 1865 TO PRESENT
Foundational Component Area Option (minimum 3 hours required)
CALCULUS III
AREN Pre-Professional Program Courses30
Of the core courses, ARCH 1301, COMS 2302, ENGL 1301, IE 2308, MATH 1426, MATH 2425, MATH 2326, PHYS 1443, and PHYS 1444 are part of the CE Pre-Professional Program.
DESIGN COMMUNICATIONS I
BASIC DESIGN AND DRAWING FOR ENGINEERS
INTRODUCTION TO CIVIL ENGINEERING
COMPUTER TOOLS - AUTOCAD
COMPUTER TOOLS - CIVIL 3D
DYNAMICS
STATICS
MECHANICS OF MATERIALS I
CHEMISTRY FOR ENGINEERS
CIRCUIT ANALYSIS
ENGINEERING PROBLEM SOLVING
AREN Professional Program Courses44
ENVIRONMENTAL CONTROL SYSTEMS I
ENVIRONMENTAL CONTROL SYSTEMS II
BUILDING INFORMATION MODELING & VISUALIZATION
CIVIL ENGINEERING COMMUNICATIONS
PROPERTIES AND BEHAVIOR OF SOILS
STOCHASTIC MODELS FOR CIVIL ENGINEERING
BASIC FLUID MECHANICS
CONSTRUCTION ENGINEERING
STRUCTURAL ANALYSIS
SOIL MECHANICS
REINFORCED CONCRETE DESIGN
STRUCTURAL DESIGN IN STEEL
PROFESSIONAL PRACTICE
SENIOR PROJECT
THERMAL ENGINEERING
DIFFERENTIAL EQUATIONS & LINEAR ALGEBRA
Total Hours120

​1 Completion of AREN 1105 INTRODUCTION TO CIVIL ENGINEERING satisfies the University's computer proficiency requirement.

2 Completion of COMS 2302 PROFESSIONAL AND TECHNICAL COMMUNICATION FOR SCIENCE AND ENGINEERING satisfies the University's communication requirement.

More hours may be required to strengthen student's program or demonstrate proficiency. See Prior Preparation and Course Requirements.

Total hours will depend upon prior preparation and academic qualifications. Also, students who do not have two units of high school foreign language will be required to take modern and classical languages courses in addition to the previously listed requirements.

Suggested course sequence

A suggested course sequence for the Pre-Professional (first two years) and Professional Program courses (final two years) is available on the CE Department’s web site.

Prior Preparation and Course Requirements

The undergraduate baccalaureate degree in architectural engineering is a four-year program and requirements for the degree are based upon prior high school preparation through either an honors or college track program. Students who have not had the appropriate prior preparation should contact the departmental advising office for a curriculum guide that will assist them in structuring a study plan that will include leveling courses. Students requiring leveling courses may require a period of time greater than four years to complete their undergraduate degree.

Courses

AREN 1105. INTRODUCTION TO CIVIL ENGINEERING. 1 Hour.

Introduction to basic civil engineering practice. There are several writing assignments and an oral presentation. Use of spreadsheet and word processor software in solving civil engineering problems and presenting solutions. Professional engineering licensure and the various specializations within civil engineering are covered.

AREN 1252. COMPUTER TOOLS - AUTOCAD. 2 Hours.

Introduction to computer aided design, using AutoCAD. Creation of precise two-dimensional engineering drawings and solid models. Prerequisite: Grade of C or better in MATH 1421.

AREN 2152. COMPUTER TOOLS - MATHCAD. 1 Hour.

Introduction to computer aided mathematics, using Mathcad. Solution of engineering problems involving systems of simultaneous linear and nonlinear equations and elementary calculus, use of the tools for visualization. Prerequisite: Grade of C or better in PHYS 1443.

AREN 2153. COMPUTER TOOLS - CIVIL 3D. 1 Hour.

Introduction to civil engineering construction documentation and building information modeling (BIM) using AutoCAD Civil 3D. Prerequisite: Grade of C or better in AREN 1252.

AREN 2221. DYNAMICS. 2 Hours.

Planar and spatial kinematics and kinetics of particles and rigid bodies utilizing Newton's Laws of Motion, the principle of work and energy, and the principle of impulse and momentum; introduction to single degree of freedom vibration. Prerequisite: Grade of C or better in AREN 2311; grade of C or better in MATH 2425.

AREN 2311. STATICS. 3 Hours.

Vector algebra; composition and resolution of forces; equivalence of force couple systems; equilibrium of force systems acting on particles, and force - couple systems acting on rigid bodies, and systems of rigid bodies; internal forces in rigid bodies; shear and moment diagrams; centroids and moments of inertia; frictional forces. Prerequisite: Grade of C or better in PHYS 1443.

AREN 2313. MECHANICS OF MATERIALS I. 3 Hours.

Concepts of stress and strain; stress-strain relationships. Behavior of members subjected to tension, compression, shear, bending, torsion, and combined loading. Deflections and elastic curves, shear and bending moment diagrams for beams, and column theory. Prerequisite: Grade of C or better in AREN 2311; Grade of C or better in MATH 2425.

AREN 2391. PROBLEMS IN ARCHITECTURAL ENGINEERING. 3 Hours.

Selected problems in architectural engineering on an individual or group basis. Reference material is assigned and progress conferences are held frequently, by arrangement, with a faculty supervisor. Prerequisite: Permission of the chair of the department.

AREN 3110. CIVIL ENGINEERING COMMUNICATIONS. 1 Hour.

Technical writing, oral communication, professional presentations, and other related topics. Prerequisite: Grade of C or better in COMS 2302.

AREN 3143. PROPERTIES AND BEHAVIOR OF SOILS. 1 Hour.

An introduction to determination of civil engineering properties of soil and their behavior, identification, grain size analysis, Atterberg limits, compaction, permeability, consolidation, and shear strength. Also an introduction to sampling of soil materials. Prerequisite: Concurrent enrollment in AREN 3343.

AREN 3301. STOCHASTIC MODELS FOR CIVIL ENGINEERING. 3 Hours.

Basic theory of probability and statistics with practical applications to civil and environmental engineering problems. Emphasis on sampling, distribution functions, tests of significance, and regression modeling. Prerequisite: Grade of C or better in MATH 2425.

AREN 3305. BASIC FLUID MECHANICS. 3 Hours.

Fundamentals of fluid statics, kinematics of fluid flow, fluid energy, fluid forces, similitude, and dimensional analysis. Related to steady flow of incompressible fluids in confined and free surface systems. Prerequisite: Grade of C or better in AREN 2311; Grade of C or better in MATH 3319 or concurrent enrollment.

AREN 3311. CONSTRUCTION ENGINEERING. 3 Hours.

Principles of construction engineering and the project management process, value engineering, specifications, different construction contracts and delivery methods, estimating and scheduling fundamentals and project control, and management of construction process. Prerequisite: Grade of C or better in IE 2308.

AREN 3341. STRUCTURAL ANALYSIS. 3 Hours.

Structural analysis/design process, structural forms, and basic structural elements. Analysis of statically determinate structures including beams, trusses, frames, and composite structures, shear and moment diagrams, influence lines, and moving loads. Methods to compute deflections including double integration, moment area, and virtual work. Methods of analysis for statically indeterminate structures including consistent deformation, slope deflection and moment distribution. Use of structural analysis programs. Prerequisite: Grade of C or better in AREN 2313.

AREN 3343. SOIL MECHANICS. 3 Hours.

An introduction to the significant geophysical and soil science properties and behavior of materials making up the earth's crust as they apply to civil engineering, sources of materials, classification, plasticity, permeability, stress distribution, consolidation, shear strength, and settlement. Also an introduction to basic foundation engineering concepts. Prerequisite: Grade of C or better in AREN 2313; Concurrent enrollment in AREN 3143.

AREN 4300. ADVANCED TOPICS IN ARCHITECTURAL ENGINEERING. 3 Hours.

Advanced topics of current interest in any one of the various fields of architectural engineering. The subject title to be listed in the class schedule. May be repeated for credit when topic changes. Prerequisite: Consent of instructor required and Admission to the AREN Professional Program.

AREN 4301. ADVANCED TOPICS IN ARCHITECTURAL ENGINEERING WITH LAB. 3 Hours.

Advanced topics of current interest in any one of the various fields of architectural engineering. The subject title to be listed in the class schedule. May be repeated for credit when topic changes. Prerequisite: Consent of instructor required and Admission to the AREN Professional Program.

AREN 4347. REINFORCED CONCRETE DESIGN. 3 Hours.

An analysis, design and synthesis course for concrete structures, emphasizing strength design method. Topics include strength and serviceability requirements, design of one way slabs, rectangular beams, flanged sections and columns, for strength, shear, bond, bearing, and serviceability. Building codes, American Concrete Institute (ACI) specifications, material specifications, test methods, and recommended practice documents are involved. Prerequisite: Grade of C or better in AREN 3341.

AREN 4348. STRUCTURAL DESIGN IN STEEL. 3 Hours.

A design synthesis course for structural steel structures using Allowable Strength Design and Load Resistance Factor Design. Topics include tension members, compression members, flexural members and simple connections. Building codes, American Institute of Steel Construction (AISC) specs, material specs, test methods, and recommended practice documents. Prerequisite: Grade of C or better in AREN 3341.

AREN 4352. PROFESSIONAL PRACTICE. 3 Hours.

Professional practice issues in the private and public sector are addressed by visiting practitioners. Topics include project management, teamwork, obtaining work, regulatory requirements, specifications, issues in design/build, design alternatives, cost estimation, design and construction drawings, contract and construction law, legal issues, ethics and professionalism, design reports, licensure, lifelong learning, ethical and engineering practice organizations. Learning principles of engineering practice by working as a team is emphasized. Oral and written presentations are required. Prerequisite: Grade of C or better in AREN 3110; Grade of C or better in AREN 3311.

AREN 4383. SENIOR PROJECT. 3 Hours.

Planning, analysis of alternatives, and designs of selected projects that cross various civil engineering disciplines, and include engineering standards and multiple realistic constraints. Application of computer-aided engineering in analysis and design. A final oral presentation and written report that presents pros and cons of alternative solutions, application of engineering standards and multiple realistic constraints are required. A team approach is emphasized. Prerequisite: Grade of C or better in AREN 4352; Completion of all required 3000 level courses; Minimum of one design course with a grade of C or better; Admission to the AREN Professional Program.

AREN 4391. PROBLEMS IN ARCHITECTURAL ENGINEERING. 3 Hours.

Selected problems in architectural engineering on an individual or group basis. Reference material is assigned and progress conferences are held frequently, by arrangement, with a faculty supervisor. Prerequisite: Permission of the chair of the department.